If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15w^2+9w=0
a = 15; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·15·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*15}=\frac{-18}{30} =-3/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*15}=\frac{0}{30} =0 $
| -0.5z^2+(+.5z)^2=0 | | (z^2-(.5z^2))+(.5z)^2=z^2 | | 4x+3x+4=6x-11+5x-7 | | 2x-(5/2)=(18/4) | | 4z÷10+5=2 | | 3/2l=2/3 | | 2x-5/2=18/4 | | 2x-5^2=18^4 | | n^2−10n−84=9 | | 0=49x^2-28x-4 | | n2−10n−84=9 | | x^2+50*x-400=0 | | 0.75s+2.25=s8+0.25 | | 9n-7=79 | | −3+5+6g=11−3g | | x+4=−x−4 | | 2(7x+6)=-44 | | 1/2(x-38)=25+6x | | 1500+50y=0 | | 10x-8=40 | | -4-2x=x-22 | | 5x+4=7x+0 | | 3x^2+4x^2+10=50 | | 5x+2=2x-22 | | -x-10-4x=-45 | | 21=x-3x-1 | | 54n=18 | | -4-6x=56 | | 10x+1.50x=4+3x | | 4+2x=2-x+6-20 | | -5=v/4-6 | | 2.5d+7.25=1+4.75d |